Selected Publications
Our team is dedicated to advancing knowledge and driving innovation through impactful contributions to the scientific and professional community. Here, you’ll find a curated selection of our published articles, white papers, and studies. Each publication reflects our commitment to excellence, collaboration, and evidence-based practices.
Browse by Topic
AGE1.CR (duck cell line for animal and human vaccines)
Efficient and stable production of Modified Vaccinia Ankara virus in two-stage semi-continuous and in continuous stirred tank cultivation systems
Tapia F, Jordan I, Genzel Y, Reichl U.PLoS One. 2017 Aug 24;12(8):e0182553. doi: 10.1371/journal.pone.0182553. eCollection 2017. PMID: 28837572
Continuous cell lines from the Muscovy duck as potential replacement for primary cells in the production of avian vaccines
Ingo Jordan, Katrin John, Kristin Höwing, Verena Lohr, Zoltán Penzes, Erzsébet Gubucz-Sombor, Yan Fu, Peng Gao, Timm Harder, Zoltán Zádori & Volker SandigAVIAN PATHOLOGY, 2016 VOL. 45, NO. 2, 137–155 DOI: 10.1080/03079457.2016.1138280
Impaired antiviral response of adenovirus-transformed cell lines supports virus replication
Bachmann M, Breitwieser T, Lipps C, Wirth D, Jordan I, Reichl U, Frensing T.JGen Virol. 2015 Dec 8. doi: 10.1099/jgv.0.000361. PubMed PMID: 26647282.
Purification of modified vaccinia virus Ankara from suspension cell culture
Jordan I, Weimer D, Iarusso S, Bernhardt H, Lohr V, Sandig V.2015. BMC Proceedings 9(Suppl 9):O13
Boosting Upstream, Downstream Processing: To Expedite Biomanufacturing, Deploy a New Genotype of Modified Vaccinia Virus Ankara
Lohr V, Sandig V, Jordan IGEN Genetic Engineering & Biotechnology News,Jordan IGEN Genetic Engineering & Biotechnology News, 2014 Jul 1 (Vol. 34, No. 13).
The avian cell line AGE1.CR.pIX characterized by metabolic flux analysis
Lohr V, Hädicke O, Genzel Y, Jordan I, Büntemeyer H, Klamt S, Reichl UBMC Biotechnol. 2014 Jul 30; 14(1):72. [Epub ahead of print] PubMed PMID: 25077436.
Propagation of viruses infecting waterfowl on continuous cell lines of Muscovy duck (Cairina moschata) origin
Mészáros I, Tóth R, Bálint A, Dán A, Jordan I, Zádori ZAvian Pathol. 2014 Jul 3; 1-28. [Epub ahead of print] PubMed PMID: 24992264.
Matrix and backstage: cellular substrates for viral vaccines
Jordan I, Sandig VViruses. 2014 Apr 11; 6(4):1672-700. doi: 10.3390/v6041672. PubMed PMID: 24732259; PubMed Central PMCID: PMC4014716.
High cell density cultivations by alternating tangential flow (ATF) perfusion for influenza A virus production using suspension cells
Genzel Y, Vogel T, Buck J, Behrendt I, Ramirez DV, Schiedner G, Jordan I, Reichl UVaccine. 2014 Feb 25; pii: S0264-410X(14)00189-3. doi: 10.1016/j.vaccine.2014.02.016. [Epub ahead of print] PubMed PMID: 24583003
Pharmaceutical Cell Lines for Biologics Production: Manipulation of cell growth, metabolism and product quality attributes
Von Horsten H, Winkler K, Sandig V2014, Pages: 216-246, DOI (Chapter): https://doi.org/10.1515/9783110278965.216
Elements in the Development of a Production Process for Modified Vaccinia Virus Ankara
Jordan I, Lohr V, Genzel Y, Reichl U, Sandig VMicroorganisms 2013, 1, 100–121.
Continuous influenza virus production in cell culture shows a periodic accumulation of defective interfering particles
Frensing T, Heldt FS, Pflugmacher A, Behrendt I, Jordan I, Flockerzi D, Genzel Y, Reichl UPLoS One. 2013 Sep 5; 8(9):e72288. doi: 10.1371/journal.pone.0072288. eCollection 2013. PubMed PMID: 24039749; PubMed Central PMCID: PMC3764112.
A novel genotype of MVA that efficiently replicates in single cell suspensions
Jordan I, Sandig VBMC Proceedings 2013, 7(Suppl 6):O1. doi:10.1186/1753-6561-7-S6-O1.
A genotype of modified vaccinia Ankara (MVA) that facilitates replication in suspension cultures in chemically defined medium
Jordan I, Horn D, John K, Sandig VViruses. 2013 Jan 21; 5(1):321-39. doi: 10.3390/v5010321. PubMed PMID: 23337383; PubMed Central PMCID: PMC3564123
Live attenuated influenza viruses produced in a suspension process with avian AGE1.CR.pIX cells
Lohr V, Genzel Y, Jordan I, Katinger D, Mahr S, Sandig V, Reichl UBMC Biotechnol. 2012 Oct 30; 12:79. doi: 10.1186/1472-6750-12-79. PubMed PMID: 23110398; PubMed Central PMCID: PMC3505166.
Production of a Viral-Vectored Vaccine Candidate Against Tuberculosis
Jordan I, Woods N, Whale G, Sandig VBioProcess International; Sep 2012
A chemically defined production process for highly attenuated poxviruses
Jordan I, Northoff S, Thiele M, Hartmann S, Horn D, Höwing K, Bernhardt H, Oehmke S, von Horsten H, Rebeski D, Hinrichsen L, Zelnik V, Mueller W, Sandig VBiologicals. 2011 Jan; 39(1): 50–8. Epub 2011 Jan 15.
PMID: 21237672
New avian suspension cell lines provide production of influenza virus and MVA in serum-free media: studies on growth, metabolism and virus propagation
Lohr V, Rath A, Genzel Y, Jordan I., Sandig V, Reichl UVaccine. 2009 Aug 6; 27(36): 4975-82. Epub 2009 Jun 14.
PMID: 19531390 [PubMed – indexed for MEDLINE]
An avian cell line designed for production of highly attenuated viruses
Jordan I, Vos A, Beilfuss S, Neubert A, Breul S, Sandig VVaccine 27(5): 748–56
Glycan analysis in cell culture-based influenza vaccine production: influence of host cell line and virus strain on the glycosylation pattern of viral hemagglutinin
Schwarzer J, Rapp E, Hennig R, Genzel Y, Jordan I, Sandig V, Reichl UVaccine. 2009 Jul 9; 27(32): 4325-36. Epub 2009 May 14.
PMID: 19410619 [PubMed – indexed for MEDLINE]
An avian cell line designed for production of highly attenuated viruses
Jordan I, Vos A, Beilfuss S, Neubert A, Breul S, Sandig VVaccine. 2009, Jan 29; 27(5): 748–56. Epub 2008 Dec 9.
PMID: 19071186 [PubMed – indexed for MEDLINE]
An Avian Designer Cell Line for Vaccine Manufacture
Jordan, I, Vos, A, Neubert, A, Sandig, VBioWorld Europe. 03–2007
AGE1.RO (fruit bat cell line in basic and applied virology)
CD26/DPP4 cell-surface expression in bat cells correlates with bat cell susceptibility to Middle East respiratory syndrome coronavirus (MERS-CoV) infection and evolution of persistent infection
Caì Y, Yú SQ, Postnikova EN, Mazur S, Bernbaum JG, Burk R, Zhāng T, Radoshitzky SR, Müller MA, Jordan I, Bollinger L, Hensley LE, Jahrling PB, Kuhn JHPLos One. 2014 Nov 19; 9(11):e112060. doi: 10.1371/journal.pone.0112060. eCollection 2014; PMID: 25409519
Influenza A Virus Polymerase Is a Site for Adaptive Changes During Experimental Evolution in Bat Cells
Poole DS, Yú SN, Caì Y, Dinis JM, Müller MA, Jordan I, Friedrich TC, Kuhn JH, Mehle AJ Virol. 2014 Aug 20; pii: JVI.01857-14. [Epub ahead of print] PubMed PMID: 25142579
Establishment of fruit bat cells (Rousettus aegyptiacus) as a model system for the investigation of filoviral infection.
Krähling V, Dolnik O, Kolesnikova L, Schmidt-Chanasit J, Jordan I, Sandig V, Günther S, Becker SPLoS Negl Trop Dis. 2010 Aug 24; 4(8): e802.
PMID: 20808767 [PubMed - indexed for MEDLINE] Free PMC Article
Cell lines from the Egyptian fruit bat are permissive for modified vaccinia Ankara.
Jordan I, Horn D, Oehmke S, Leendertz FH, Sandig VVirus Res. 2009 Oct; 145(1): 54-62. Epub 2009 Jun 18.
PMID: 19540275 [PubMed - indexed for MEDLINE]
AGE1.HN human neuronal cell line
The influence of cell growth and enzyme activity changes on intracellular metabolite dynamics in AGE1.HN.AAT cells.
Rath AG, Rehberg M, Janke R, Genzel, Y, Scholz S, Noll T, Rose T, Sandig V, Reichl UJ Biotechnol. 2014 May 20; 178:43-53. doi: 10.1016/j.jbiotec.2014.03.012. Epub 2014 Mar 18. PMID: 24657347
N-glycosylation and biological activity of recombinant human alpha1-antitrypsin expressed in a novel human neuronal cell line.
Blanchard V, Liu X, Eigel S, Kaup M, Rieck S, Janciauskiene S, Sandig V, Mark U, Walden P, Tauber R, Berger MBiotechnology and Bioengineering, Volume 108, Issue 9, pages 2118-2128, September 2011
Quercetin treatment changes fluxes in the primary metabolism and increases culture longevity and recombinant α1-antitrypsin production in human AGE1.HN cells.
Niklas J, Nonnenmacher Y, Rose T, Sandig V, Heinzle EAppl Microbiol Biotechnol 2011 (11) 3811-3814 DOI 10.1007/s00253-011-3811-4
Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis
Niklas J, Schräder E, Sandig V, Noll T, Heinzle EBioprocess Biosyst Eng. 2010 Dec 25. [Epub ahead of print]
PMID: 21188421 [PubMed - as supplied by publisher]
HuALN (The human artificial lymph node)
Towards a 21st-century roadmap for biomedical research and drug discovery: consensus report and recommendations.
Langley GR, Adcock IM, Busquet F, Crofton KM, Csernok E, Giese C et al.Article in Drug discovery today · October 2016, DOI: 10.1016/j.drudis.2016.10.011
Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing.
Marx U, Andersson TB, Bahinski A, Beilmann M, Beken S, Cassee FR, Cirit M, Daneshian M, Fitzpatrick S, Frey O, Gaertner C, Giese C, Griffith L, Hartung T, Heringa MB, Hoeng J, de Jong WH, Kojima H, Kuehnl J, Luch A, Maschmeyer I, Sakharov D, Sips AJAM, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tralau T, Tsyb S, van de Stolpe A, Vandebriel R, Vulto P, Wang J, Wiest J, Rodenburg M, Roth A,ALTEX. 2016; 33:272–321. doi: 10.14573/altex.1603161
Modeling Human Immunity In Vitro: Improving Artificial Lymph Node Physiology by Stromal Cells
Sardi M, Lubitz A, Giese CApplied In Vitro Toxicology. September 2016 2(3): 143-150. doi:10.1089/aivt.2016.0004.
Human immunity in vitro - Solving immunogenicity and more.
Giese C, Marx UADDR 2014 Apr; 69-70:103-122
Crosstalk between immune cells and mesenchymal stromal cells in a 3D bioreactor system.
Seifert M, Lubitz A, Trommer J, Könnig D, Korus G, Marx U, Volk H D, Duda G, Kasper G, Lehmann K, Stolk M, Giese CInt J Artif Organs 2012; 35: (11) 986-995
Engineering tissue alternatives to animals: applying tissue engineering to basic research and safety testing.
Holmes A, Brown R, Shakesheff K, Giese CRegen. Med. 2010, 4(4), 579–592
Immunological substance testing on human lymphatic micro-organoids in vitro.
Giese C, Lubitz A, Demmler C, Reuschel J, Bergner K, Marx UJournal of Biotechnology 2010, Volume 148, Issue 1, 1 July 2010, Pages 38–45
A Human Lymph Node In Vitro – Challenges and Progress
Giese C, Demmler CD, Ammer R, Hartmann S, Lubitz A, Miller L, Müller R and Marx UJournal of Artificial Organs. 2006, 30(10):803–808
High Level Expression
Increasing antibody yield and modulating final product quality using the FreedomTM CHO-STM production platform.
Michelle Sabourin1*, Ying Huang1, Prasad Dhulipala3, Shannon Beatty1, Jian Liu1, Peter Slade, Shawn Barrett, Shue-Yuan Wang, Karsten Winkler, Susanne Seitz, Thomas Rose, Volker Sandig4 Peggy Lio, Steve Gorfien, Laurie Donahue-Hjelle, Graziella PirasBMC Proceedings 2011, 5(Suppl 8):P102 http://www.biomedcentral.com/1753-6561/5/S8/P102
Alternative Strategies and New Cell Lines for High-level Production of Biopharmaceuticals
Rose T, Winkler K, Brundke, E, Jordan I, Sandig V,In: Knäblein: Modern Biopharmaceuticals, Wiley-VCH. 2005. 761-778
Mammalian cells
Sandig V, Rose Th, Winkler K, Brecht R,In: G. Gelissen: Production of recombinant proteins. Wiley-VCH. 2005. 233-252
Glycoengineering (for potency enhancement and immune modulation)
A novel bicistronic gene design couples stable cell line selection with a fucose switch in a designer CHO host to produce native and afucosylated glycoform antibodies.
Roy G, Martin T, Barnes A et al.MAbs. 2018 Feb 22:1-15. doi: 10.1080/19420862.2018.1433975. [Epub ahead of print]
Engineering of CHO Cells for the Production of Recombinant Glycoprotein Vaccines with Xylosylated N-glycans.
Sandig G, von Horsten HH, Radke L, Blanchard V, Frohme M, Giese C, Sandig V, Hinderlich SBioengineering (Basel). 2017 Apr 28;4(2). pii: E38. doi: 10.3390/bioengineering4020038. PMID:28952517
Fucose-targeted glycoengineering of pharmaceutical cell lines.
Ogorek C, Jordan I, Sandig V, von Horsten H.H.Methods Mol Biol. 2012; 907:507-17 PMID: 22907371
Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-D-lyxo-4-hexulose reductase.
von Horsten HH, Ogorek C, Blanchard V, Demmler C, Giese C, Winkler K, Kaup M, Berger M, Jordan I, Sandig VGlycobiology. 2010 Dec; 20 (12):1607-18. PMID: 20639190
Analytical development
Characterization of Recombinant Proteins (Chapter 9.)
C. Giese, H. von Horsten and S. Zietze:DOI: 10.1002/9783527632909.ch9 in Kayser and Warzecha (Eds.) (2012): Pharmaceutical Biotechnology: Drug Discovery and Clinical Applications
Quantitative MALDI-TOF-MS Using Stable-isotope Labeling: Application to the Analysis of N-glycans of Recombinant α-1 Antitrypsin Produced Using Different Culture Parameters.
Blanchard V, Kaup M , Eigel S, Rieck S, Sandig V , Marx U , Tauber R, Berger M,Journal of Carbohydrate Chemistry, 30:320–333, 2011 DOI: 10.1080/07328303.2011.605194
Quality for Biologics.
Zietze S, Riedel M,Biopharm Knowledge Publishing. 2008
Standardization, evaluation and early-phase method validation of an analytical scheme for batch-consistency N-glycosylation analysis of recombinant produced glycoproteins.
Zietze S, Müller R. H, Brecht R,European Journal of Pharmaceutics and Biopharmaceutics. 2008, 68: 818–827, DOI: 10.1016/j.ejpb.2007.08.015
Drug Testing In Vitro – Breakthroughs and Trends in Cell Culture Technology.
Marx and Sandig (eds.)Wiley-VCH Verlag GmbH & Co. KgaA. 2007
Various
Development and Assessment of Human Adenovirus Type 11 as a Gene Transfer Vector.
Stone D, Ni S, Li Z.Y, Gaggar A, diPaolo N, Feng Q, Sandig V, Lieber A,Journal of Virology. 2005. April. 5090-5104, DOI: 10.1128/JVI.79.8.5090-5104.2005
Genome Size and Structure Determine Efficiency of Postinternalizytion Steps and Gene Transfer of Capsid-Modified Adenovirus Vectors in a Cell-Type-Specific Manner.
Shayakhmetov D.M, Li Z.Y, Gaggar A, Gharwan H, Ternovoi V, Sandig V, Lieber A,Journal of Virology. 2004 Sept, 10009–10022, doi: 10.1128/JVI.78.18.10009-10022.2004
The complete nucleotide sequence, genome organization, and orign of human adenovirus type11.
Stone D, Furthmann A, Sandig V, Lieber A,Virology. 2003 Apr 25. 309(1): 152–165, DOI: 10.1016/S0042-6822(02)00085-5
Gene Therapy
State-of-the-Art and New Optionsto Assess T Cell Activation by Skin Sensitizers: Cosmetics Europe Workshop
Van Fliet E, Kühnl J, Giese C et al.ALTEX 35(2), 2018
Novel Bioreactors for Fragile Glycoproteins.
Langhammer S, Brecht R, Marx U,GEN. 2007, January (Vol. 27, No. 1) 1: 34–35
Must Reads
Through the years our scientists published countless important papers. Nevertheless we would like to put forward some of our publications as being of particular interest:
Continuous cell lines from the Muscovy duck as potential replacement for primary cells in the production of avian vaccines.
Jordan I, John K, Höwing K, Lohr V, Penzes Z, Gubucz-Sombor E, Fu Y, Gao P, Harder T, Zádori Z, Sandig VAVIAN PATHOLOGY, 2016 VOL. 45, NO. 2, 137–155 DOI: 10.1080/03079457.2016.1138280
Matrix and backstage: cellular substrates for viral vaccines
Jordan I, Sandig VViruses. 2014 Apr 11; 6(4):1672-700. doi: 10.3390/v6041672. PMID: 24732259
A chemically defined production process for highly attenuated poxviruses.
Jordan I, Northoff S, Thiele M, Hartmann S, Horn D, Höwing K, Bernhardt H, Oehmke S, von Horsten H, Rebeski D, Hinrichsen L, Zelnik V, Mueller W, Sandig VBiologicals. 2011 Jan; 39(1): 50–8. PMID: 21237672
ProBioGen News
Join our news and always be up-to-date.